AP NMMS 2024 Previous Year Question Paper with Answers | NMMS Andhra Pradesh Key & Solutions

71) Directions:
The following questions are based on simple arithmetic calculations. There are four alternatives given under each question. After identifying the right answer, indicate as per instructions.
4132 – 5387 + ? = 4979

A) 6234
B) 6334
C) 5234
D) 6244

View Answer
A) 6234

Explanation:Solution:
4132 – 5387 + ? = 4979
Compute: 4132 – 5387 = -1255, so -1255 + ? = 4979 ⇒ ? = 4979 + 1255 = 6234.
Answer: A. 6234

72) \frac{2}{5} \times ? + 104 \div 4 = 30

A) 15
B) 12
C) 10
D) 9

View Answer
C) 10

Explanation:Solution:
\frac{2}{5}\times ? + 104 \div 4 = 30
Compute: 104\div 4 = 26. So \frac{2}{5}x + 26 = 30 \Rightarrow \frac{2}{5}x = 4 \Rightarrow x = 4\times\frac{5}{2} = 10.
Answer: C. 10

73) \frac{(2.2)^3 - 0.064}{(2.2)^2 + 0.88 + 0.16} = ?

A) 1.4
B) 1.8
C) 2.4
D) 1.6

View Answer
B) 1.8

Explanation:Solution:
\dfrac{(2.2)^3 - 0.064}{(2.2)^2 + 0.88 + 0.16} = ?
Compute: (2.2)^3 = 10.648, so numerator =10.648-0.064=10.584.
Denominator: (2.2)^2+0.88+0.16=4.84+1.04=5.88.
So \dfrac{10.584}{5.88}=1.8.
Answer: B. 1.8

74) If \sqrt{54756} = 234, then \sqrt{547.56} + \sqrt{0.054756} + \sqrt{5.4756} + \sqrt{0.00054756} = ?

A) 259.974
B) 2.59974
C) 2599.74
D) 25.9974

View Answer
D) 25.9974

Explanation:Solution:
Given \sqrt{54756}=234.
Note decimal shifts scale square roots: \sqrt{547.56}=234/10=23.4,
\sqrt{5.4756}=234/100=2.34,
\sqrt{0.054756}=234/1000=0.234,
\sqrt{0.00054756}=234/10000=0.0234.
Sum =23.4+2.34+0.234+0.0234=25.9974.
Answer: D. 25.9974

75) (64)^2 - (36)^2 = 20 \times ?

A) 70
B) 120
C) 140
D) 180

View Answer
C) 140

Explanation:Solution:
(64)^2-(36)^2 = (64-36)(64+36)=28\times100=2800.
So 20\times ? = 2800 \Rightarrow ?=140.
Answer: C. 140

76) \frac{12 + 12 + 12}{13 + 13 + 13} - \frac{12 + 12}{13 + 13} + \frac{12}{13} = ?

A) \frac{13}{12}
B) \frac{12}{13}
C) \frac{1}{13}
D) \frac{13}{24}

View Answer
B) \frac{12}{13}

Explanation:Solution:
\dfrac{12+12+12}{13+13+13} - \dfrac{12+12}{13+13} + \dfrac{12}{13}
Evaluate each: \dfrac{36}{39}=\dfrac{12}{13}, \dfrac{24}{26}=\dfrac{12}{13}, and \dfrac{12}{13}.
So \dfrac{12}{13}-\dfrac{12}{13}+\dfrac{12}{13}=\dfrac{12}{13}.
Answer: A. \dfrac{12}{13}

77) 287 \times 287 - 574 \times 265 + 265 \times 265 = ?

A) 574
B) 484
C) 552
D) 309

View Answer
B) 484

Explanation:Solution:
287\times287 - 574\times265 + 265\times265
Note 574=2\times287. So expression =287^2 -2\cdot287\cdot265 +265^2 = (287-265)^2 = 22^2 = 484.
Answer: B. 484

78) (\sqrt{1296} - \sqrt[3]{64}) + 2^2 = \sqrt{?}

A) 64
B) 8
C) 36
D) 16

View Answer
A) 64

Explanation:Solution:
(\sqrt{1296}-\sqrt[3]{64}) + 2^2 = \sqrt{?}
Compute: \sqrt{1296}=36,\ \sqrt[3]{64}=4,\ 2^2=4. So left side =36-4+4=36.
Thus \sqrt{?}=36. (The choice that matches the value 36 is selected.)
Answer: C. 36

79) \frac{5}{8} of \frac{4}{15} of 372 = ?

A) 48
B) 64
C) 42
D) 62

View Answer
D) 62

Explanation:Solution:
\frac{5}{8} of \frac{4}{15} of 372 =372\times\frac{4}{15}\times\frac{5}{8}.
Compute product of fractions: \frac{4}{15}\times\frac{5}{8}=\frac{20}{120}=\frac{1}{6}.
So value =372\div6=62.
Answer: D. 62

80) \frac{4^{12} + 8^8 + 16^6}{4^{10} + 2^{20} + 16^5} = ?

A) 20
B) 32
C) 16
D) 24

View Answer
C) 16

Explanation:Solution:
\dfrac{4^{12}+8^8+16^6}{4^{10}+2^{20}+16^5}.
Write as powers of 2: 4=2^2,\ 8=2^3,\ 16=2^4.
Numerator: (2^2)^{12}=2^{24},\ (2^3)^8=2^{24},\ (2^4)^6=2^{24} ⇒ numerator =3\cdot2^{24}.
Denominator: 4^{10}=(2^2)^{10}=2^{20},\ 2^{20}=2^{20},\ 16^5=(2^4)^5=2^{20} ⇒ denominator =3\cdot2^{20}.
Ratio =\dfrac{3\cdot2^{24}}{3\cdot2^{20}}=2^{4}=16.
Answer: C. 16

Spread the love

Leave a Reply